La prodigiosa computadora de la NASA que te transporta a través de la singularidad del agujero negro

En un logro sin precedentes, la Agencia Espacial Estadounidense (NASA) ha desarrollado una computadora revolucionaria capaz de transportar a los científicos y a los curiosos a través de la singularidad de un agujero negro. Esta innovadora tecnología, que revoluciona la forma en que entendemos el universo, permite a los usuarios experimentar una simulación hiperrealista del viaje a través de la gravedad extrema de un agujero negro. La computadora de la NASA utiliza algoritmos avanzados y modelos matemáticos complejos para recrear con precisión el entorno de un agujero negro, permitiendo a los usuarios explorar uno de los fenómenos más misteriosos del universo.

Index

Simulación de viaje a través del agujero negro: un viaje a la singularidad

Una supercomputadora de la NASA ha producido una nueva visualización inmersiva que permite adentrarse en el horizonte de sucesos, el punto sin retorno de un agujero negro. Esta simulación permite experimentar el viaje a través del agujero negro de manera inmersiva y visual.

Jeremy Schnittman, astrofísico del Centro de Vuelos Espaciales Goddard de la NASA, explicó que la gente pregunta a menudo sobre esto, y simular estos procesos difíciles de imaginar me ayuda a conectar las matemáticas de la relatividad con las consecuencias reales en el universo real.

Schnittman simuló dos escenarios diferentes, uno en el que una cámara, un sustituto de un atrevido astronauta, simplemente no alcanza el horizonte de sucesos y sale disparado; y otro en el que cruza el límite, sellando su destino.

Visualizaciones inmersivas

Visualizaciones inmersivas

Las visualizaciones están disponibles en múltiples formas. Los videos explicativos actúan como guías turísticas, iluminando los extraños efectos de la teoría general de la relatividad de Einstein. Las versiones renderizadas como videos de 360 grados permiten a los espectadores mirar a su alrededor durante el viaje, mientras que otras se reproducen como mapas planos de todo el cielo.

La creación de las visualizaciones

Para crear las visualizaciones, Schnittman se asoció con el científico de Goddard Brian Powell y utilizó la supercomputadora Discover en el Centro de Simulación Climática de la NASA. El proyecto generó alrededor de 10 terabytes de datos y tardó unos cinco días en ejecutarse en solo el 0,3% de los 129.000 procesadores de Discover.

El destino es un agujero negro supermasivo con 4,3 millones de veces la masa de nuestro Sol, equivalente al monstruo ubicado en el centro de nuestra galaxia, la Vía Láctea.

La espaguetificación

La fuerza gravitacional en el extremo de un objeto más cercano al agujero negro es mucho más fuerte que la del otro extremo. Los objetos que caen se estiran como fideos, un proceso que los astrofísicos llaman espaguetificación.

El horizonte de sucesos del agujero negro simulado abarca unos 25 millones de kilómetros, o alrededor del 17% de la distancia entre la Tierra y el Sol. Una nube plana y arremolinada de gas caliente y brillante llamada disco de acreción lo rodea y sirve como referencia visual durante la caída.

Lo mismo ocurre con las estructuras brillantes llamadas anillos de fotones, que se forman más cerca del agujero negro a partir de la luz que lo ha orbitado una o más veces. Un telón de fondo del cielo estrellado visto desde la Tierra completa la escena.

El viaje a través del agujero negro

A medida que la cámara se acerca al agujero negro, alcanzando velocidades cada vez más cercanas a las de la propia luz, el brillo del disco de acreción y las estrellas del fondo se amplifica de forma muy parecida a como aumenta el tono del sonido de un coche de carreras que se aproxima.

Las películas comienzan con la cámara ubicada a 640 millones de kilómetros de distancia, y el agujero negro llena rápidamente la vista. En el camino, el disco del agujero negro, los anillos de fotones y el cielo nocturno se distorsionan cada vez más, e incluso forman múltiples imágenes a medida que su luz atraviesa el espacio-tiempo cada vez más deformado.

En tiempo real, la cámara tarda unas 3 horas en caer hasta el horizonte de sucesos, ejecutando casi dos órbitas completas de 30 minutos a lo largo del camino. Pero para cualquiera que lo observara desde lejos, nunca llegaría allí.

A medida que el espacio-tiempo se distorsiona cada vez más cerca del horizonte, la imagen de la cámara se ralentizaría y luego parecería congelarse apenas por debajo de ella. Esta es la razón por la que los astrónomos originalmente se referían a los agujeros negros como estrellas congeladas.

En el escenario alternativo, la cámara orbita cerca del horizonte de sucesos pero nunca lo cruza y escapa a un lugar seguro. Si un astronauta volara una nave espacial en este viaje de ida y vuelta de seis horas mientras sus colegas en una nave nodriza permanecieran lejos del agujero negro, regresaría 36 minutos más joven que sus colegas.

Esta situación puede ser incluso más extrema, señaló Schnittman. Si el agujero negro estuviera girando rápidamente, como el que se muestra en la película 'Interstellar' de 2014, regresaría muchos años más joven que sus compañeros de misión.

Susana Vidal

Soy Susana, redactora de la página web Diario Online, un periódico independiente de actualidad nacional española. Mi pasión por la escritura y la veracidad de la información me lleva a investigar a fondo cada noticia que publicamos. Con un enfoque objetivo y crítico, me esfuerzo por ofrecer a nuestros lectores contenidos relevantes y de calidad. Mi compromiso es mantener informada a la sociedad española, abordando temas de interés público con profesionalismo y ética periodística. ¡Gracias por seguirnos en nuestra plataforma digital!

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Subir